Moving Coil Galvanometer:
A moving coil galvanometer is an instrument which is used to measure electric currents. It is a sensitive electromagnetic device which can measure low currents even of the order of a few microamperes.
Moving Coil Galvanometer Principle
A current-carrying coil when placed in an external magnetic field experiences magnetic torque. The angle through which the coil is deflected due to the effect of the magnetic torque is proportional to the magnitude of current in the coil.
Moving Coil Galvanometer Construction And Diagram
The moving coil galvanometer is made up of a rectangular coil that has many turns and it is usually made of thinly insulated or fine copper wire that is wounded on a metallic frame. The coil is free to rotate about a fixed axis. A phosphor-bronze strip that is connected to a movable torsion head is used to suspend the coil in a uniform radial magnetic field.
Essential properties of the material used for suspension of the coil are conductivity and a low value of the torsional constant. A cylindrical soft iron core is symmetrically positioned inside the coil to improve the strength of the magnetic field and to make the field radial. The lower part of the coil is attached to a phosphor-bronze spring having a small number of turns. The other end of the spring is connected to binding screws.
The spring is used to produce a counter torque which balances the magnetic torque and hence help in producing a steady angular deflection. A plane mirror which is attached to the suspension wire, along with a lamp and scale arrangement is used to measure the deflection of the coil. Zero-point of the scale is at the centre.
Working of Moving Coil Galvanometer:
Let a current I flow through the rectangular coil of n number of turns and a cross-sectional area A. When this coil is placed in a uniform radial magnetic field B, the coil experiences a torque τ.
Let us first consider a single turn ABCD of the rectangular coil having a length l and breadth b. This is suspended in a magnetic field of strength B such that the plane of the coil is parallel to the magnetic field. Since the sides AB and DC are parallel to the direction of the magnetic field, they do not experience any effective force due to the magnetic field. The sides AD and BC being perpendicular to the direction of field experience an effective force F given by F = BIl
Using Fleming’s left-hand rule we can determine that the forces on AD and BC are in opposite direction to each other. When equal and opposite forces F called couple acts on the coil, it produces a torque. This torque causes the coil to deflect.
We know that torque τ = force x perpendicular distance between the forces
τ = F × b
Substituting the value of F we already know,
Torque τ acting on single-loop ABCD of the coil = BIl × b
Where lx b is the area A of the coil,
Hence the torque acting on n turns of the coil is given by
τ = nIAB
The magnetic torque thus produced causes the coil to rotate, and the phosphor bronze strip twists. In turn, the spring S attached to the coil produces a counter torque or restoring torque kθ which results in a steady angular deflection.
Under equilibrium condition:
kθ = nIAB
Here k is called the torsional constant of the spring (restoring couple per unit twist). The deflection or twist θ is measured as the value indicated on a scale by a pointer which is connected to the suspension wire.
θ= ( nAB / k)I
Therefore θ ∝ I
The quantity nAB / k is a constant for a given galvanometer. Hence it is understood that the deflection that occurs the galvanometer is directly proportional to the current that flows through it.
Sensitivity Of Moving Coil Galvanometer
The general definition of the sensitivity experienced by a moving coil galvanometer is given as the ratio of change in deflection of the galvanometer to the change in current in the coil.
S = dθ/dI
The sensitivity of a galvanometer is higher if the instrument shows larger deflection for a small value of current. Sensitivity is of two types, namely current sensitivity and voltage sensitivity.
- Current Sensitivity
The deflection θ per unit current I is known as current sensitivity θ/I
θ/I = nAB/k
- Voltage Sensitivity
The deflection θ per unit voltage is known as Voltage sensitivity θ/V. Dividing both sides by V in the equation θ= (nAB / k)I;
θ/V= (nAB /V k)I = (nAB / k)(I/V) = (nAB /k)(1/R)
R stands for the effective resistance in the circuit.
It is worth noting that voltage sensitivity = Current sensitivity/ Resistance of the coil. Therefore under the condition that R remains constant; voltage sensitivity ∝ Current sensitivity.
Factors Affecting Sensitivity Of A Galvanometer
a) Number of turns in the coil
b) Area of the coil
c) Magnetic field strength B
d) The magnitude of couple per unit twist k/nAB
No comments:
Post a Comment